変圧器の電圧変動率について

【お知らせ】

電験2種向けの"書籍"の販売を開始しました。
第1弾は、「電験2種 2次試験 機械・制御」の対策本で、
・変圧器
・誘導機
・同期機
・直流機
について、「電験2種って意外と簡単だったんだ」って思えるぐらいに詳細を解説しています。

詳しくは、ブリュの公式ブログ BOOKs Projectをご覧ください。

※現在、 Amazon のみで販売しています。

みなさん、こんにちは!

ブリュの公式ブログ.org(for Academic Style)にお越しいただきまして、ありがとうございます!

今回は、変圧器の電圧変動率について説明します。

ベクトル図が登場するため、少しハードルが高いかもしれませんが、少しずつ読んでいってください。

前半では変圧器の回路図から、ベクトル図で電圧変動率を導出する流れになっています。

そのため、ベクトル図についての基本的な部分がご理解いただけてる場合、スムーズに読み進めることができるのではないかと思います。

電圧変動率とは?

電圧変動率$\epsilon$とは、

  • 定格電圧:$V_{21}$
  • 1次側電圧の2次側換算値:$V_{20}=\frac{V_1}{a}$

とすると、

$$\epsilon=\frac{V_{20}-V_{21}}{V_{21}}×100$$

となります。

これは、意味的には、

  • 定格負荷が接続されているとき
  • 負荷を切り離したとき
  • 変圧器の端子に生じる電圧

と、定格電圧の比率ということです。

まず、定格状態の時には負荷電流$I_2$が流れているので、変圧器内部で電圧降下が生じています。

そして、無負荷になると負荷電流$I_2=0$になるので、変圧器内部での伝夏効果が生じません。

その結果、2次側端子に$V_{20}$がそのまま表れることになります。

この無負荷時の電圧が、2次側定格電圧に対してどの程度の大きさであるかを示すものが、電圧変動率になります。

つまり、電圧変動率は

  • 2次側巻線のインピーダンス値が大きい変圧器ほど
  • 定格負荷電流の大きい変圧器ほど

電圧変動率も大きくなることがわかります。

試験問題などでは、単に電圧変動率を求めることや、電圧変動率を利用した計算を行うことが多いです。

なお、実際に電力系統で変圧器が使用される場合、電圧変動率は小さいほうが好まれる傾向にあるそうです。

電圧変動率のベクトル図からの導出

回路図より、定格電圧$V_{21}$と無負荷誘導起電力$V_{20}$、定格電流$I$の関係をベクトル図で表すと、下のようになります。

ここで等式を立てていきます。

まず、実軸成分に注目すると、下の図より、

$$V_{20}の実軸成分=V_{21}+RIcos\theta+XIsin\theta$$

が成り立ちます。

次に、虚軸成分に注目すると、

$$V_{20}の虚軸成分=RIcos\theta-XIsin\theta$$

これより、三平方の定理から、

$${V_{20}}^2=(V_{21}+RIcos\theta+XIsin\theta)^2+(XIcos\theta-RIsin\theta)^2$$

となります。

両辺を${V_{21}}^2$で割ると、

$${(\frac{V_{20}}{V_{21}}})^2=(1+\frac{RI}{V_{21}}cos\theta+\frac{XI}{V_{21}}sin\theta)^2+(\frac{XI}{V_{21}}cos\theta-\frac{RI}{V_{21}}sin\theta)^2$$

ここで、パーセント抵抗を$p$[%], パーセントリアクタンスを$x$[%]とすると、

  • $p=\frac{RI}{V_{21}}×100$
  • $x=\frac{XI}{V_{21}}×100$

より、

$${(\frac{V_{20}}{V_{21}}})^2=(1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta)^2+(\frac{q}{100}cos\theta-\frac{p}{100}sin\theta)^2$$

$${(\frac{V_{20}}{V_{21}}})^2=(1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta)^2(1+(\frac{\frac{q}{100}cos\theta-\frac{p}{100}sin\theta}{1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta})^2)$$

$$\frac{V_{20}}{V_{21}}=(1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta)\sqrt{(1+(\frac{\frac{q}{100}cos\theta-\frac{p}{100}sin\theta}{1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta})^2)}$$

ここで、$\sqrt{1+x^2}≒1+\frac{1}{2}x^2$より、

$$\frac{V_{20}}{V_{21}}=(1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta)(1+\frac{1}{2}(\frac{\frac{q}{100}cos\theta-\frac{p}{100}sin\theta}{1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta})^2)$$

$$\frac{V_{20}-V_{21}}{V_{21}}=1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta+\frac{1}{2}\frac{(\frac{q}{100}cos\theta-\frac{p}{100}sin\theta)^2}{1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta}$$

$\frac{V_{20}-V_{21}}{V_21}=\frac{V_{20}}{V_{21}}-1$より、

$$\frac{V_{20}-V_{21}}{V_{21}}=\frac{p}{100}cos\theta+\frac{q}{100}sin\theta+\frac{1}{2}\frac{(\frac{q}{100}cos\theta-\frac{p}{100}sin\theta)^2}{1+\frac{p}{100}cos\theta+\frac{q}{100}sin\theta}$$

$$\frac{V_{20}-V_{21}}{V_{21}}≒\frac{p}{100}cos\theta+\frac{q}{100}sin\theta+\frac{1}{2}(\frac{q}{100}cos\theta-\frac{p}{100}sin\theta)^2$$

となります。

最終的に、

$$\epsilon=\frac{V_{20}-V_{21}}{V_{21}}×100$$

なので、

$$\epsilon=\frac{V_{20}-V_{21}}{V_{21}}×100=pcos\theta+qsin\theta+\frac{(qcos\theta-psin\theta)^2}{200}$$

となります。

一般的には、右辺第2項は小さいため無視できて、

$$\epsilon=\frac{V_{20}-V_{21}}{V_{21}}×100=pcos\theta+qsin\theta$$

で使われることが多いです。

まとめ

ここまで、変圧器の電圧変動率について説明してきました。

一見難しそうな計算ですが、電圧変動率の意味するところを理解してしまえば、あとはベクトル図から求まります。

特にベクトル図についても、三平方の定理で計算できるシンプルなものですから、sin,cosの取り方だけ間違えないようにすれば、スムーズに計算できるでしょう。

以上、変圧器の電圧変動率について、参考になれば幸いです。

▼当ブログの書籍です!▼
みんなのおススメ! 電験2種 2次試験 機械・制御の計算対策 (電気機器編)
著者:ブリュの公式ブログ
出版:BOOKs Project
・電験2種 2次試験 機械・制御対策の決定版
・カラー印刷
・Amazonのみで販売中!
スポンサーリンク

シェアする

  • このエントリーをはてなブックマークに追加

フォローする